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Abstract. In this paper we discuss the black hole–string transition of the small Schwarzschild black hole of
AdS5×S

5 using the AdS/CFT correspondence at finite temperature. The finite temperature gauge theory
effective action, at weak and strong coupling, can be expressed entirely in terms of constant Polyakov lines
which are SU(N) matrices. In showing this we have taken into account that there are no Nambu–Goldstone
modes associated with the fact that the 10-dimensional black hole solution sits at a point in S5. We show
that the phase of the gauge theory in which the eigenvalue spectrum has a gap corresponds to supergrav-
ity saddle points in the bulk theory. We identify the third order N =∞ phase transition with the black
hole–string transition. This singularity can be resolved using a double scaling limit in the transition region

where the large N expansion is organized in terms of powers of N−2/3. The N =∞ transition now becomes
a smooth crossover in terms of a renormalized string coupling constant, reflecting the physics of large but
finite N . Multiply wound Polyakov lines condense in the crossover region. We also discuss the implications
of our results for the resolution of the singularity of the lorenztian section of the small Schwarzschild black
hole.

1 Introduction and synopsis

The problem of the fate of small Schwarzchild black holes
is important to understand, in a quantum theory of grav-
ity. In a unitary theory this problem is the same as the
formation of a small black hole. An understanding of this
phenomenon has bearing on the problem of spacelike sin-
gularities in quantum gravity and also (to some extent) on
the information puzzle in black hole physics. It would also
teach us something about non-perturbative string physics.
In the past Susskind [1], Horowitz and Polchinski

(SHP) [2] and others [3–5] have discussed this, in the
framework of string theory, as a black hole–string transi-
tion or more appropriately a crossover. Their proposal is
that this crossover is parametrically smooth and it simply
amounts to a change of description of the same quantum
state in terms of degrees of freedom appropriate to the
strength of the string coupling. The entropy and mass of
the state change at most by o(1). By matching the entropy
formulas for black holes and perturbative string states,
they arrived at a crude estimate of the small but non-zero
string coupling at the crossover. The SHP description is
difficult to make more precise because a formulation of
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string theory in the crossover regime is not yet explicitly
known.
There are many studies on the black hole–string transi-

tion and the nature of the black hole singularity in the case
of two- and three-dimensional black holes[10–15]. Small
extremal supersymmetric black holes have been discussed
in string theory with enormous success [6–9]. In particu-
lar the α′ corrections to the entropy of the supersymmetric
string sized black holes has been matched to the micro-
scopic counting.
In this paper we discuss the black hole–string crossover

for the small 10-dimensional Schwarzschild black hole in
the framework of the AdS/CFT correspondence. In [16],
building on the work of [17–22], a simplified model for the
thermal history of small and big black holes inAdS5 (which
were originally discussed by Hawking and Page [23]) was
discussed in detail. In particular, the large N Gross–
Witten–Wadia (GWW) transition [24–26] was identified
with the SHP transition for the small AdS5 black hole.
However, it turns out that the small black hole in

AdS5, which is uniformly spread over S
5, has a Gregory–

Laflamme instability1. When the horizon radius rh ∼

1 This point was brought to our attention by Aharony and
Minwalla. Understanding the Gregory–Laflamme transition
from a boundary perspective is an important open issue. In the
current work we will not try to address this and only assume the
existence of such a transition.
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0.5R [27] the l = 1 perturbation is unstable. The final con-
figuration this instability leads to, as rh decreases and the
horizon becomes less and less uniform over S5, is most
likely to be the 10-dimensional Schwarzschild black hole.
This small 10-dimensional Schwarzschild black hole does
not have any further instability of Gregory–Laflamme
type. This black hole also happens to be a solution with
asymptotic AdS5×S5 geometry for ls� rh�R (16).
When the horizon of this black hole approaches the

string scale ls, we expect the supergravity (geometric) de-
scription to break down and be replaced by a description in
terms of degrees of freedom more appropriate at this scale.
Presently we have no idea how to discuss this crossover
in the bulk IIB string theory. Hence we will discuss this
transition and its smoothening in the framework of a gen-
eral finite temperature effective action of the dual SU(N)
gauge theory on S3×S1. In fact it is fair to say that in
the crossover region we are really using the gauge theory as
a definition of the non-perturbative string theory.
At large but finiteN , since S3 is compact, the partition

function and all correlation functions are smooth functions
of the temperature and other chemical potentials. There is
no phase transition. However, in order to make a connec-
tion with a theory of gravity, which has an infinite number
of degrees of freedom, we have to take the N →∞ limit
and study the saddle point expansion in powers of 1

N
. It is

this procedure that leads to non-analytic behavior. It turns
out that by taking into account exact results in the 1

N
ex-

pansion it is possible to resolve this singularity and recover
a smooth crossover in a suitable double scaling limit.
In the specific problem at hand, it turns out that in

the transition region the large N expansion is organized in
powers of N−2/3. In the bulk theory, assuming AdS/CFT,
this would naively mean a string coupling expansion in

powers of g
2/3
s . However in a double scaling limit, a renor-

malized string coupling g̃ = N
2
3 (βc−β) once again orga-

nizes the coupling constant expansion in integral powers.
The free energy and correlators are smooth functions of g̃.
The use of the AdS/CFT correspondence for study-

ing the black hole–string crossover requires that there is
a description of small Schwarzschild black holes as solu-
tions of type IIB string theory in AdS5×S5. Fortunately,
Horowitz and Hubeny [28] have studied this problem with
a positive conclusion. This result enables us to use the
boundary gauge theory to address the crossover of the
small Schwarzschild black hole into a state described in
terms of ‘stringy’ degrees of freedom. Even so the gauge
theory is very hard to deal with as we have to solve it in
the 1

N
expansion for large but finite values of the ’t Hooft

coupling λ.
However, there is a window of opportunity to do some

precise calculations, because it can be shown that the ef-
fective action of the gauge theory at finite temperature can
be expressed entirely in terms of the Polyakov loop which
does not depend on points on S3. This is a single N ×
N unitary matrix, albeit with a complicated interaction
among the winding modes TrUn. This circumstance, that
the order parameter U in the gauge theory is a constant
on S3, matches well on the supergravity side with the fact

that all the zero angular momentum black hole solutions
are also invariant under the SO(4) symmetry of S3. The
black hole may be localized in S5, but it does not depend on
the co-ordinates of S3. The coefficients of the effective ac-
tion depend upon the temperature, the ’t Hooft coupling λ
and the VEVs of the scalar fields. Since the 10-dimensional
black hole sits at a point in S5, onemay be concerned about
the spontaneous breaking of SO(6) R-symmetry and cor-
responding Nambu–Goldstone modes. We will conclude,
using a supergravity analysis, that the symmetry is not
spontaneously broken. Instead we have to introduce col-
lective coordinates for treating the zero modes associated
with this symmetry.
The general unitary matrix model can be analyzed due

to technical progress we have made in discussing the gen-
eral multi-trace unitary matrix model. We prove an iden-
tity that enables us to express and study the critical prop-
erties of a general multi-trace unitary matrix model in
terms of the critical properties of a general single trace ma-
trix model.
As is well known, the single trace unitary matrix model

at N =∞ has a third order GWW transition, which oc-
curs when the density of eigenvalues of the unitary ma-
trix develop a gap on the unit circle. The vanishing of the
density at a point on the circle leads to a relation among
the coupling constants of the matrix model which defines
a surface in the space of couplings (parameters of the ef-
fective action). The behavior of the matrix model in the
neighborhood of this surface (call it the critical surface)
is characterized by universal properties which are entirely
determined by the way the gap in the eigenvalue density
opens: ρ(θ) ∼ (π− θ)2m, where m is a positive integer. In
our problem, there is only one tunable parameter, namely
the temperature. Hence we will mainly focus only on the
lowest, m = 1, critical point and present the relevant op-
erator that opens the gap. We also discuss the possible
relevance of higher order multi-critical points.
Using the properties of the 1N expansion near and away

from the critical surface, we will argue that the small black
hole (or for that matter any saddle point of supergrav-
ity around which a well defined closed string perturbation
expansion exists) corresponds to the phase of the matrix
model where the density of eigenvalues on the unit circle
has a gap. The small black hole therefore corresponds to
the gapped phase of the unitary matrix model.
We make a reasonable physical assumption based on

the proposal of SHP: that the thermal history of the un-
stable saddle point corresponding to the small black hole
eventually intersects the critical surface at a critical tem-
perature Tc, which is o(1/ls). Tc is smaller than the Hage-
dorn temperature. Once the thermal history crosses the
critical surface, it would eventually meet the AdS5×S5

critical point corresponding to a uniform eigenvalue distri-
bution. (Such a history was already discussed in the con-
text of a simplified model in [16].) It is natural to identify
the crossover across the critical surface in the gauge theory
as the bulk black hole–string crossover.
At the crossover, the o(1) part of the gauge theory par-

tition function (which depends on the renormalized string
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coupling) can be exactly calculated in a double scaling
limit. This is a universal result in the sense that it does
not depend on the location of the critical point on the
critical surface but depends only on deviations which are
normal to the critical surface. If we parametrize this by
t, the free energy −F (t) solves the differential equation
∂2F
∂t2
=−f2(t) where f(t) satisfies the Painlevé II equation.

The exact analytic form of F (t) is not known, but F (t) is
a smooth function in the domain (−∞,∞)2. All the oper-

ators ρk =
TrUk

N
condense in the crossover region. In fact〈

N
2
3 (ρk−ρ

ug
k )
〉
=Ck

d
dtF , where Ck =

(−1)k

k and ρugk rep-

resents the expectation value of ρk in the ungapped phase.
The smooth crossover of the euclidean black hole pos-

sibly has implications for the resolution of the singularity
of the lorentzian black hole, because within the AdS/CFT
correspondence we should be able to address all physical
questions of the bulk theory in the corresponding gauge
theory. In particular, we should be able to address phenom-
ena both outside and inside the black hole horizon.
The plan of this paper is as follows. Section 2 dis-

cusses the SHP transition. Section 3 discusses the small
10-dimensional black hole in AdS5×S5. Section 4 dis-
cusses the finite temperature gauge theory and the effect-
ive action in terms of the unitary matrix model. Section 5
presents the multi-trace partition function as the calcula-
ble integral transform of the single trace unitary matrix
model. Section 6 discusses critical behavior in the unitary
matrix model. Section 7 discusses the saddle point equa-
tions of the matrix model. Section 8 discusses the double
scaled partition function. Section 9 discusses the intro-
duction of chemical potentials and higher critical points.
Section 10 discusses the applications of the critical matrix
model to the small 10-dimensional black hole. Section 11
discusses the lorentzian black hole.

2 Black hole–string transition

In this section we review the black hole–string crossover.
Consider the 10-dimensional Schwarzschild black hole. As
long as its horizon radius rh� ls (ls is the string length),
the supergravity description is valid, and we can trust
the lowest order effective action in ls. When rh ∼ ls, this
description breaks down and one learns to derive an ef-
fective action valid to all orders in ls or devises other
methods to deal with the problem. Let us assume that
the description in all orders of ls is available; then pre-
sumably the geometrical description is still valid in prin-
ciple, and one can indeed discuss the notion of a string
size horizon with radius rh ∼ ls [6, 7, 9]. It is reasonable
to expect that in such a description the qualitative fact
that the mass decreases with the horizon radius and in-
creasing temperature, is still valid. These facts are obvi-
ously valid to lowest order in ls, because rh = 2GNM and
Th = (GNM)

1/7. Here GN is Newton’s coupling and M is

2 This universal formula also appeared in the discussion of
the simplified model in [16]

the mass of the black hole. For definitiveness let us fix
the mass and the entropy of the black hole. Then rh and
Th vary with the gravitational coupling GN. Now, since
g2s =GNl

−8
s , we can say that rh and Th vary with gs, and

hence a crossover at rh ∼ ls occurs at a specific value of the
string coupling.
When rh � ls the above description of the state has to

be replaced by a description in terms of microscopic de-
grees of freedom relevant to the scale ls. Even in this de-
scription it is reasonable to assume that the temperature
of the state varies as we change the string coupling. The
assumption of Susskind–Horowitz–Polchinski is that the
mass of the state would change by at most o(1) in the string
coupling.
From the above discussion it is clear that the black

hole–string crossover occurs in a regime where the curva-
ture of the black hole is o(1) in string units, so as to render
the supergravity description invalid. It is also clear that be-
sides ls related effects, the string coupling is non-zero and
its effects have to be taken into account. Presently our un-
derstanding of string theory is not good enough for us to
make a precise and quantitative discussion of the crossover.
Hence we will discuss the problem using the AdS/CFT cor-
respondence. In order to do this we need to be able to
embed the small black hole in AdS5×S5. This has been
discussed by Horowitz and Hubeny [28]. We briefly review
their work in the next section.

3 Embedding the 10-dimensional
Schwarzschild black hole in AdS5×S5

It is not difficult to argue that the small 10-dimensional
Schwarzschild black hole exists as a solution of Einstein’s
equation in AdS5×S5. A small patch of the AdS5×
S5 space is locally identical to 10-dimensional euclidean
space. Since the horizon radius of this black hole rh �
R, we can have a solution which is locally identical to
a 10-dimensional Schwarzschild black hole in flat space-
time. We would also require that the solution for large
10-dimensional radial distances asymptotically goes to
AdS5×S5. This solution is not explicitly known, but it can
be numerically constructed given the boundary conditions
on the radial functions. The more non-trivial issue is con-
cerning the fact that the type IIB theory also has a 5-form.
In the absence of the black hole this form is the volume
form of S5 and carries N units of flux. It turns out that, in
the presence of the small black hole, a consistent solution
to the equations of motion is such that there is no energy
flux into the black hole. Hence the small black hole remains
small. In the above analysis one neglects the back reaction
on the metric due to the fact that the black hole is small
and the curvature near its horizon is large.
The solution is conveniently represented if we use a 10-

dimensional radial coordinate system (fixed by the area of
S8) in AdS5×S5. One splits S8 into S3 and S4, corres-
ponding to the rotational SO(4) symmetry of AdS5 and
the remaining (unbroken) SO(5) symmetry of S5. This is
achieved by using the following coordinate transformation
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in (16):

r = ρ sin θ ,

χ= ρ cos θ . (1)

In these coordinates, a flat patch within AdS is achieved
in the limit r, ξ�R, where R is the radius of AdS5. The
metric takes the form

ds2 =−dt2+ dρ2+ρ2
(
dθ2+sin2 θdΩ23+cos

2 θdΩ24
)
.

(2)

(The angular term in parentheses is equivalent to dΩ28).
Similarly the 5-form field strength takes the form

F =−ρ3 sin4 θdt∧ dρ∧ dΩ3

−ρ4 sin3 θ cos θdt∧ dθ∧ dΩ3+ r
4 cos5 θdρ∧ dΩ4

− r5 sin θ cos4(θ)dθ∧ dΩ4 . (3)

In this metric the Schwarzschild solution is given by

ds2 =−f(ρ)dt2+f−1(ρ)dρ2

+ρ2
(
dθ2+sin2 θdΩ23 +cos

2 θdΩ24
)

(4)

F = g1(ρ, θ)
[
−ρ3 sin4 θdt∧ dρ∧ dΩ3

−r5 sin θ cos4 θdθ∧ dΩ4
]

+ g2(ρ, θ)
[
ρ4 sin3 θ cos θdt∧ dθ∧ dΩ3

+r4 cos5 θdρ∧ dΩ4
]
, (5)

where near the black hole horizon f = 1−
r7h
r7
. As r→∞,

the functions f(r), g1(r, θ), g2(r, θ) approach their corres-
ponding values in AdS5×S5 geometry. The explicit solu-
tions for these functions are not known, but their form can
be determined by numerically integrating a set of coupled
linear differential equations. These solutions have the de-
sired property that imply that the small black hole remains
small.

4 Finite temperature gauge theory, order
parameter and effective action

We first present a general discussion of the order param-
eter of SU(N) YM theory on the compact manifold S3.
We consider the theory in the canonical ensemble, i.e.
the euclidean time direction is periodically identified with
a period of β = 1

T
. It was pointed out in [17, 46] that the

Yang–Mills theory partition function on S3 at a tempera-
ture T can be reduced to an integral over a unitary SU(N)
matrix U , which is the zero mode of Polyakov loop on the
euclidean time circle. This analysis was done in the limit
when the ’t Hooft coupling λ→ 0. We have

Z(λ, T ) =

∫
dUeS(U) , (6)

with

U = P exp

(
i

∫ β
0

A0dτ

)
, (7)

where A0(τ) is the zero mode of the time component of
the gauge field on S3. This follows from the fact that apart
from A0 all modes of the gauge theory on S

3 are massive.
We will discuss the validity of the above expression in both
the strong and weak (λ) coupling regimes. Hence we can
use U as an order parameter. Gauge invariance requires
that the effective action of U be expressed in terms of prod-
ucts of TrUn, with n an integer, since these are the only
gauge invariant quantities that can be constructed fromA0
alone. Seff(U) also has a ZN symmetry under

U → e
2πi
N U . (8)

This is due to the global gauge transformations which are
periodic in the euclidean time direction up to ZN factors.
ZN invariance puts a further restriction on the form of the
effective action, and a generic term in S(U,U†) will have
the form

TrUn1TrUn2 · · ·TrUnk ,

n1+ · · ·nk = 0 (mod N) , k > 1 . (9)

In the large N limit we can work with U(N) rather than
SU(N), and in that case ZN is replaced by U(1).
We can expand Seff in terms of a complete set of such

operators. The first few terms are

S(U,U†) = aTrUTrU−1+
b

N
TrU2TrU−1TrU−1

+
c

N2
TrU3TrU−1TrU−1TrU−1+ · · ·

(10)

More generally we will write the effective action (10) in
a form which will be convenient for later discussion,

S(U,U†) =

p∑
i=1

aiTrU
iTrU†i+

∑
k,k′

αk,k′Υk(U)Υk′(U
†) ,

(11)

where k, k′ are arbitrary vectors of non-negative entries,
and

Υk(U) =
∏
j

(
TrU j

)kj . (12)

It is useful to define

�(k) =
∑
j

jkj , |k|=
∑
j

kj . (13)

The above parametrization of the general action is slightly
redundant, since the second summand in (11) is already
the most general gauge invariant action forU ,U†, but writ-
ing it this way will be very useful. Reality of the action (11)
requires αkk′ = α

∗
k′k. In fact, using the explicit perturba-

tive rules to compute S(U,U†) in (11), one can show that
the αkk′ are real; therefore

αkk′ = αk′k . (14)
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On the other hand, invariance of S(U,U†) under U → eiθU
requires that

�(k) = �(k′) . (15)

We now present evidence at both weak and strong λ
that the above effective action is correct.

4.1 Perturbative analysis

In perturbation theory one can integrate out all fields, ex-
cept the zero-mode A0 of the time component of a gauge
field, to get an effective action of U [46]. All fields other
than this mode are massive in a free YM theory on S3. The
scalar fields get their mass due to the curvature coupling.
We can expand all other fields on S3, and due to the finite
radius of S3 all the harmonics are massive. Hence at small
coupling (small λ) one may integrate out all the fields and
derive an effective action forU . In [19] the perturbative (up
to three loop order) effective action was calculated and it
has the form (10).

4.2 Strong coupling analysis

The above discussion is perturbative, and there is no guar-
antee that the scalar fields remain massive in the expansion
of the theory around λ=∞. We will now show, using the
AdS/CFT correspondence, that even at strong coupling
(large λ), all the excitations ofN = 4 SYM theory on S3 are
massive [29]. For illustration we consider the wave equation
of a scalar field φ(r, t) in a general black hole background
which is asymptotically AdS5×S5.
The AdS5×S5 metric is given by

ds2 =

(
1+
r2

R2

)
dτ2+

dr2

1+ r2

R2

+ r2dΩ23 +R
2dΩ25 .

(16)

Let us consider the situation when the asymptotic so-
lution depends on the co-ordinates of S5 and S3. Since S5

and S3 are compact spaces, their laplacians have a dis-
crete spectrum. We focus on the radial part and con-
sider a finite energy solution of energy E, φ(r, θ3, θ5, τ) =
f(r, θ3, θ5) exp(Eτ). The wave equation in the asymptotic
metric (16) is given by

(3+5r2)f ′(r, θ3, θ5)+ r(1+ r
2)f ′′(r, θ3, θ5)

+

(
r

1+ r2
E2+

1

r
∆2Ω3+ r∆

2
Ω5

)
f(r, θ3, θ5) = 0 ,

(3+5r2)f ′(r)+ r(1+ r2)f ′′(r)

+

(
r

1+ r2
E2−

1

r
L2Ω3− rM

2
Ω5

)
f(r) = 0 ,

where ′ is the partial derivative with respect to r and LΩ3
is the contribution from S3 harmonics, andM2Ω5 is the con-
tribution from S5 harmonic.
For f(r)∼ rα, as r→∞, (17) reduces to

5rα+2
(
(α(α−1)+5α)−M2Ω5

)
= 0 . (17)

In the last equation we have neglected the term E2rα and
the S3 harmonics part, as it is suppressed by a factor of
order 1r . Hence α1 =−2+

√
4+M2 or α2 =−2−

√
4+M2

are two solutions of (17). Consequently , f(r) ∼ rα2 is the
only solution which is normalizable.
Let us now analyze the situation near the black hole

horizon which, in the euclidean continuation, acts like the
origin of polar co-ordinates. Hence, we have the boundary
condition,

df

dr
= 0 . (18)

Near the origin, the scalar field laplacian in the black hole
background will have two solutions for a given E. One
of them diverges at the horizon and the other maintains
the condition (18). For a generic E, a well-behaved solu-
tion in general approaches a non-renormalizable solution
as r→∞. As in quantum mechanical problems, a nor-
malizable solution exists only for those values of E for
which the solution that behaves correctly at the lower end-
point also vanishes for r→∞. This eigenvalue condition
determines a discrete value of E. Hence the mass gap in
SYM theory on S3 persists at the strong coupling. The ba-
sic physical reason for the discrete spectrum is that the
asymptotic AdS5×S5 geometry gives rise to an infinitely
rising potential for large r.
In order to make an estimate of the mass gap we note

that the black hole metric depends on the combination
GM , where G ∼ 1

N2
is Newton’s coupling and M ∼N2 is

the mass of the black hole. Further using standard formu-
las of black hole thermodynamics it is possible to express
GM entirely in terms of the temperature of the black hole,
which sets the scale of the mass gap.
We also expect the single negative eigenvalue in the

spectrum of the euclidean Schwarzschild solution in asymp-
totically flat space-time to persist in the present case. Next
we discuss the zero modes.

SO(6) non-invariance of the 10-dimensional black hole.
As discussed in the introduction, our main interest is the
study of the 10-dimensional small black hole to string tran-
sition inAdS5×S5. The metric of the small 10-dimensional
black hole in AdS5×S5 is not symmetric under the
SO(6) transformations of S5. Hence the corresponding
saddle point in the gauge theory would transform under
the SO(6) R-symmetry group and a natural question is
whether the SO(6) symmetry is spontaneously broken in
the dual gauge theory with associated massless Nambu–
Goldstone modes. If this were true, then we would have
to include additional degrees of freedom in the effective
action (10).
Fortunately, even though the small 10-dimensional

black hole sits at a point in S5, the massless modes associ-
ated with motions about this point correspond to normal-
izable solutions of the small fluctuations equation. Let us
discuss this point in more detail.
We have already discussed in the Sect. 3 that the small

10-dimensional black hole is invariant under an “unbro-
ken” SO(5) subgroup of SO(6). The remaining broken gen-
erators of SO(6) rotate the black hole in S5. The black
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hole is labeled by its mass (equivalently temperature) and
its position in S5, which we denote by the co-ordinates θ5.
SO(6) rotations can rotate the black hole to any point in

S5. The action of the initial and final black hole is the same,
because we get the final solution just by a co-ordinate rota-
tion of the initial solution. As there is an orbit of black hole
solutions with the same action, it is expected that there is
a zero mode in the spectrum of the small oscillations oper-
ator around the black hole.
Let us clarify this point in more detail. Consider a black

hole metric (g0µν(θ5)) as a function of θ5. As we mentioned
before, an infinitesimal rotation in S5 creates a new black
hole solution which is given by g1µν = g

0
µν + δgµν . As both

the matrices g0µν and g
1
µν solve the equations of motion,

their difference δgµν will be a zero mode. The existence of
such a zero mode does not necessarily signal the onset of
spontaneous symmetry breaking. The important point is
whether the zero mode is normalizable or not.We will show
that δgµν is a normalizable zero mode.
We make the assumption that the asymptotic geometry

of an uncharged black hole solution is determined by its
mass. Hence the asymptotic geometry of the black hole is
given by that of a small AdS5 black hole [23] with correc-
tions fµν ,

ds2 =

(
1+
r2

R2
−
m

r2

)
dt2+

dr2(
1+ r2

R2
− m
r2

)

+ r2dθ23+R
2dθ25+fµν dx

µdxν , (19)

where fµν ∼
1
r3
as r→∞. Hence the difference of g0(µ, ν)

and g1(µ, ν) can be written as

δg(µ, ν) = f1µ,ν −f
0
µ,ν , (20)

where f0 and f1 denotes the f ’s corresponding to g0 and
g1. Now, fµν ∼

1
r3
implies δgµν ∼

1
r3
. Hence δgµν is square

integrable3,
∫
d4xδg2µν ∝

∫
drr3

1

r6
∝

∫
dr
1

r3
. (21)

Since the symmetry is not spontaneously broken, we
should consider the full orbit of the classical field under
SO(6) (or its coset) using the method of collective coordi-
nates [38]. Hence we have the situation in which the degrees
of freedom correspond to two sets of zero modes: those
corresponding to A0 and those corresponding to SO(6)
symmetry. In the method of collective coordinates we make
the following change of variables in the gauge theory path
integral.
For simplicity of presentation we denote the fields of

the gauge theory that transform under SO(6) by φ(x) and
consider

φ(x) = φ0(x)
[Ω5]+η(x) (22)

3 This argument seems to be independent of α′ corrections, as
the asymptotic geometry is always weakly curved for any black
hole situated in a asymptotic AdS space with ls�R.

and the gauge condition,
(
η, φ

[Ω5]
0

)
= 0 , (23)

where φ0(x)
[Ω5] is the orbit under SO(6) of the classical

configuration φ0(x). The path integral measure now be-
comes

Dφ(x) = dΩ5Dη(x)δ
(
η, φ

[Ω5]
0

)
∆, (24)

where ∆ is the Faddev–Popov determinant. Then by stan-
dard means we can see that the zero mode is eliminated by
the delta function and the collective coordinate (compact
group measure) factors out of the path integral and the re-
maining action is a functional of the classical field φ0(x).
Integrating out the fluctuations η, we will obtain an effect-
ive action entirely in terms of the unitary matrix U . The
coefficients of the effective action will now depend on the
VEVs of the scalar fields.

4.3 Comments on the effective theory

It should be mentioned that the effective action (10) is con-
structed only from the zero mode ofA0 on a compact mani-
fold. Hence this effective action will not be able to describe
physical situations which depend on the co-ordinates of the
compact manifold S3. However, on the supergravity side
all the zero angular momentum black hole solutions are in-
variant under the SO(4) symmetry of S3. The black hole
may be localized in S5, but it does not depend on the co-
ordinates of S3. This fortunate circumstance enables us to
use (10) as a reliable effective action to describe some as-
pects of the string theory in AdS5×S5.
The saddle points of (10) corresponding to the N = 4

SYM theory are in one to one correspondence with the
bulk supergravity (more precisely IIB string theory) saddle
points. For example, the AdS5×S5 geometry corresponds
to a saddle point such that 〈TrUn〉= 0 ∀n �= 0. Hence the
eigenvalue density function is a uniform function on the cir-
cle. Now, depending on the co-efficients in (10) the saddle
point 〈TrUn〉 can have a non-uniform gapped or ungapped
eigenvalue density profile. Changing the values of the coef-
ficients, by varying the temperature, may open or close the
gap and lead to non-analytic behavior in the temperature
dependence of the free energy at N =∞. We will interpret
this phenomenon as the string–black hole transition. As
we shall see, this non-analytic behavior can be smoothened
out by a double scaling technique in the vicinity of the
phase transition.

5 Exact integral transform
for the partition function

We start with the most general effective action given in
(11). The partition function is given by

Z =

∫
[dU ]eS(U,U

†) . (25)
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We will assume in the following that ai > 0 in (11). This
amounts to the assumption that ρi = 〈

1
N
TrU i〉 = 0 is al-

ways a saddle point of the effective action. It corresponds
to the AdS5×S5 saddle point of IIB string theory. In [30] it
was shown that, at sufficiently low temperatures, a1 > 0.
We now use the standard gaussian trick to write

exp

{ p∑
i=1

aiTrU
iTrU†i

}
=

(
N2

2π

)p ∫ p∏
i=1

dgidḡi
ai

× exp

{
−N2

p∑
i=1

giḡi

ai
+N

p∑
i=1

(
giTrU

i+ ḡiTrU
†i
)}
.

(26)

Using this trick a second time, we have

exp

⎛
⎝−N2

p∑
j=1

gj ḡj

aj

⎞
⎠=

(
N2

π

)p ∫ p∏
j=1

aj dµj dµ̄j

× exp

{
−N2

p∑
j=1

ajµjµ̄j+iN
2
∑
j

(µj ḡj+ µ̄jgj)

}
.

(27)

In order to deal with an arbitrary polynomial P of
TrU i,TrU†i, we use the following identity in (26):

exp

{
P (TrU i,TrU†i)+

p∑
i=1

aiTrU
iTrU†i

}

=

(
N2

2π

)p ∫ p∏
i=1

dgidḡi
ai

exp

{
−N2

p∑
i=1

giḡi

ai

}

× exp

{
P

(
∂

N∂gi
,
∂

N∂ḡi

)}

× exp

{
N

p∑
i=1

(
giTrU

i+ ḡiTrU
†i
)}

(28)

=

(
N2

2π

)p∫ p∏
i=1

dgidḡi
ai

exp

{
N

p∑
i=1

(
giTrU

i+ ḡiTrU
†i
)}

× exp

{
P

(
−
∂

N∂gi
,−

∂

N∂ḡi

)}
exp

{
−N2

p∑
i=1

giḡi

ai

}
.

(29)

In the last line we have integrated by parts. Then we
use (27) to write

exp

{
P

(
−
∂

N∂gi
,−

∂

N∂ḡi

)}
exp

{
−N2

p∑
i=1

giḡi

ai

}

=

(
N2

π

)p
exp

{
P

(
−
∂

N∂gi
,−

∂

N∂ḡi

)}∫ p∏
j=1

aj dµj dµ̄j

× exp

{
−N2

p∑
j=1

ajµjµ̄j+iN
2
∑
j

(µj ḡj+ µ̄jgj)

}

=

(
N2

π

)p ∫ p∏
j=1

aj dµj dµ̄j exp

{
−N2

p∑
j=1

ajµj µ̄j

+iN2
∑
j

(µj ḡj+ µ̄jgj+P (iNµj , iNµ̄j))

}
. (30)

Since the effective action (11) is a polynomial in TrU i,
TrU†i, we can use the procedure discussed above to write
the partition function (25) as

Z =

(
N4

2π2

)p ∫ p∏
i=1

dgidḡidµidµ̄i exp
(
N2Seff

)
,

(31)

where

Seff =−
p∑
j=1

ajµjµ̄j+i
∑
j

(µj ḡj+ µ̄jgj)

+
∑
k,k′

αk,k′(−i)
|k|+|k′|Υk(µ̄)Υk′(µ)+F (gk, ḡk) .

(32)

In the above formula we have introduced the definition

Υk(µ) =
∏
j

µ
kj
j , (33)

and the free energy F (gk, ḡk) is defined by

exp
(
N2F (gk, ḡk)

)

=

∫
[dU ] exp

{
N
∑
i≥1

(
giTrU

i+ ḡiTrU
†i
)}
. (34)

It is important to note that, given the effective action
S(U,U†) of the gauge theory, Seff can be exactly calculated.
One notes that F (gi, ḡi) depends only on the p− 1

phases, since one of the phases of the gi can be absorbed by
a rotation of U in the unitary integral in (34). The full inte-
grand (31) can be shown to be independent of one phase of
gi by a redefinition of the auxiliary variables µj , µ̄j .
The significance of (31) is that the partition function

(25) can be expressed as an exact integral transformation
of the linear matrix model (34). The phase structure and
the critical behavior of the linear matrix model is well un-
derstood, and hence we can study these to learn about the
critical behavior and the phase structure of (25). In the
next section we will discuss the phase structure of (34).

6 Critical behavior in matrix model

The eigenvalues of an unitary matrix U are the complex
numbers eiθi4. In the large N limit, we can consider an
eigenvalue density ρ(θ), defined on the unit circle by

ρ(θ) =
1

N

N∑
i=1

δ(θ− θi) =
∑
n

exp(inθ)
1

N
TrUn . (35)

4 The phase structure of a generic unitary matrix model has
been discussed in [39].
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The density function is non-negative and normalized,
∫
ρ(θ)dθ = 1 , (36)

ρ(θ)≥ 0 . (37)

It is well known that in the limit of N →∞, ρ(θ) can
develop gaps, i.e. it can be non-zero only in bounded inter-
vals. For example, in the case of a single gap when ρ(θ) is
non-zero only in the interval (− θ02 ,

θ0
2 ), it is given by the

classical formula

ρ(θ) = f(θ)

√
sin2
θ0

2
− sin2

θ

2
. (38)

A well known example of a ρ(θ) which does not have
a gap is

ρ(θ) =
1

2π
(1+a cos(θ)) , a < 1 . (39)

At a= 1, ρ(π) = 0, and a gap will begin to open. For a>
1 the functional form of ρ(θ) is as given by (38).
The matrix model under investigation has a compli-

cated effective action. The saddle point distribution of the
eigenvalues of the matrix U may or may not have a gap, de-
pending on the values of parameters gk in (34). In the large
N expansion, the functional dependence of F (gk, ḡk) on
gk, ḡk depends on the phase, and we quote from the known
results [31, 32, 34, 43],

N2F (gk, ḡk) =N
2
∑
k

kgkḡk

4

+e−2Nf(gk,ḡk)
n=∞∑
n=1

1

Nn
F (1)n , ungapped

N2F (gk, ḡk) =N
2
∑
k

kgkḡk

4
+
n=∞∑
n=0

N−
2
3nF (2)n ,

g− gc ∼ o
(
N−

2
3

)

N2F (gk, ḡk) =N
2G (gk, ḡk)+

n=∞∑
n=1

G(n)

N2
, gapped .

(40)

In the above, we have assumed for simplicity that the
eigenvalue distribution has only one gap. (In principle we
cannot exclude the possibility of a multi-gap solution. But
in this paper, since we are interested in the critical phe-
nomena that results when the gap opens (or closes), we will
concentrate on the single gap solution.) Near the bound-
ary of phases, the functions Fn(g) and Gn(g) diverge. It
is well known that in the leading order N , F (gk, ḡk) has
a third order discontinuity at the phase boundary. This
non-analytic behavior is responsible for the largeN GWW
type transition. In the o(N−

2
3 ) scaling region near the

phase boundary (the middle expansion in (40)) this non-
analytic behavior can be smoothened by the method of
double scaling. This smoothening is important for our cal-
culation of the double scaled partition function near the
critical surface.

In (40) f(gk, ḡk), F
(1)
n , F

(2)
n and Gn(gk, ḡk) are calcu-

lable functions using standard techniques of orthogonal
polynomials. As an example,G(gk, ḡk) can be expressed as

G(gk, ḡk) =
1

N
logh0+

∫ 1
0

dξ(1− ξ) log f0(ξ) , (41)

where f0(ξ) and h0 are determined in terms of gk, ḡk by
a recursion relation of orthogonal polynomials for the uni-
tarymatrix model. It should be noted that in the ungapped

phase, all perturbative
(
1
N2

)
corrections to the leading free

energy vanish. This follows from the fact that in the char-
acter expansion (strong coupling expansion) the ungapped
free energy becomes an exact result. We also note that at
gk = 0 = ḡk, f = 0 and the non-pertubative term is absent.

6.1 Gap opening critical operator
at m= 1 critical point

We now derive the form of the critical operator that opens
the gap and corresponds to the scaling region of width

o
(
N−

2
3
)
.

From (40) we can easily find the density of eigenvalues
in the ungapped phase,

ρ(θ) =
1

2π

(
1+
∑
k

(kgk exp(ikθ)+kḡk exp(ikθ))

)

and ρk = kgk . (42)

For a set of real gk, the lagrangian (34) is invariant under
U → U†. We will assume that the gap opens at θ = π ac-
cording to ρ(π−θ)∼ (π−θ)2, which characterizes the first
critical point5. At the boundary of the gapped–ungapped
phase (critical surface) we have ρ(π) = 0. In terms of the
critical Fourier components ρck, it is the equation of a plane
with normal vector D̃k = (−1)k,

∞∑
k=−∞

(−1)k (ρck+ ρ̄
c
k) =−1 . (43)

Now since ρck = kg
c
k (up to non-perturbative corrections),

we get the equation of a plane,

∞∑
k=−∞

(−1)kk (gck+ ḡ
c
k) =−1 , (44)

where gck are the values of gk at the critical plane. Since the
metric induced in the space of gk from the space of ρk is
Gk,k′ = k

2δk,k′ , the vector that defines this plane is

Ck =
(−1)k

k
. (45)

We mention that the exact values of gck where the thermal
history of the small black hole intersects the critical surface

5 In general, the mth critical point is characterized by ρ(π−
θ)∼ (π− θ)2m.
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are not known to us as we do not know the coefficients of
the effective lagrangian. However, this information, which
depends on the details of the dynamics, does not influ-
ence the critical behavior. The information where the small
black hole crosses the critical surface is given by the saddle
point (50), which is in turn determined by the o(N2) part
of the partition function.
Below we will show that the critical behavior is deter-

mined by the departure from the critical surface and not
by where the thermal history intersects it, and we con-
clude that the o(1) part of the double scaled partition func-
tion is always determined in terms of the solution of the
Painlevé II equation.
If we go slightly away from the critical surface by set-

ting gk = g
c
k+ δgk and ḡk = g

c
k+ δḡk, then the gap opens,

provided ρ(π)< 06. This condition is easily ensured by the

choice δgk+ δḡk = tN
−23Ck, t < 0, which is normal to the

critical plane (44).
The operator that corresponds to ρ(π) = 0 at the first

critical point is

Ô =
∞∑
k=1

(
gckTrU

k+ ḡkTrU
†k
)
. (46)

The gap at θ = π opens if we add a perturbation that leads
to a small negative value for the ungapped solution of ρ(π).
Such a perturbation is necessarily in the direction of the
vector Ck, because a perturbation that lies in the critical
plane does not contribute to the opening of the gap. Hence
we will set (gk− gck) =N

−23 t̃k. As we shall explain in Ap-
pendix A, t̃k = tCk, where t= C̃ · t̃ is an arbitrary parame-
ter and C̃ is the unit vector corresponding to C. Therefore
the relevant gap opening perturbation to be added to the
action is

Ôt =N
−23 t

∞∑
k=1

Ck(TrU
k+TrU†k) . (47)

The factor N−
2
3 is indicative that the perturbation is rele-

vant and has exponent− 23 . N acts like an infrared cutoff.
In the double scaling limit, near the critical surface,

F
(2)
0 in (40) is a function of the parameter t (see Ap-

pendix A). It is known that F
(2)
0 (t) (from now on we will

call it F (t)) satisfies the following differential equation:

∂2F

∂t2
=−f2(t) , (48)

where f(t) satisfies the Painlevé II equation,

1

2

∂2f

∂t2
= tf +f3 . (49)

The exact analytic form of F (t) is not known, but F (t) is
a smooth function in the domain (−∞,∞). Smoothness of
F (t) guarantees the smoothening of a largeN transition in
the double scaling limit.

6 To calculate ρ(θ) we have used the ungapped solution
in (40).

In the gapped phase of the matrix model, F (gk, ḡk) has
a standard expansion in integer powers of 1

N2
, which be-

comes divergent as one approaches the critical surface. In

the double scaling region (40) (g− gc) ∼ O
(
N−

2
3

)
, and

the perturbation series (40) is organized in an expansion in

powers of N−
2
3 . The reason for the origin of such an ex-

pansion is not clear from the viewpoint of the bulk string
theory. However, it is indeed possible to organize the per-
turbation series, in the scaling region, in terms of integral
powers of a renormalized coupling constant. We will come
back to this point later. In the ungapped phase the occur-
rence of o(e−N ) terms is also interesting. Here too we lack
a clear bulk understanding of the non-perturbative terms
which naturally remind us of the D-branes.

7 Saddle point equations at large N

In this section we will use the results of the previous sec-
tion to write down the large N saddle point equations for
the multi-trace matrix model (31). We treat µj and µ̄j as
independent complex variables. This is natural, as the sad-
dle point of the theory may occur at complex values of the
variable, though at the end we will find that for real αk,k′
in (11) we have saddle points in imaginary µi and real gi.
From (11) we deduce the saddle point at largeN by includ-
ing the leading o(N2) contribution of F (gk, ḡk) to the free
energy. The equations for saddle points are given by

∂Seff

∂gj
= iµ̄j +

1

2j
ḡj = 0 ,

∂Seff

∂ḡj
= iµj+

1

2j
gj = 0 ,

∂Seff

∂µj
=−ajµ̄j+iḡj+

∑
k,k′

αk,k′(−i)
|k|+|k′|

k′j

µj
Υk(µ̄)Υk′(µ)

= 0 ,

∂Seff

∂µ̄j
=−ajµj+igj+

∑
k,k′

αk,k′(−i)
|k|+|k′| kj

µ̄j
Υk(µ̄)Υk′(µ)

= 0 . (50)

These equations correspond to the ungapped phase. Equa-
tions similar to (50) can also be written using F (gk, ḡk) in
the gapped phase.
By the AdS/CFT correspondence the solutions to (50)

aredual to supergravity/string theory solutions, likeAdS5×
S5 and various AdS5×S5 black holes. The number and
types of saddle points and their thermal histories depends
on the dynamics of the gauge theory (i.e. on the numeri-
cal values of the parameter aj and αk,k′, which in turn are
complicated functions of λ and β). These issues have been
discussed in the framework of simpler models in [16], where
the first order confinement/deconfinement transition and
its relation with the Hawking–Page type transition in the
bulk has also been discussed. Here we will not address these
issues but focus on the phenomenon of an unstable saddle
point of (50) crossing the critical surface (44).
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By solving (50) we can write gj in terms of µj and
the coefficients aj(β), αk,k′(β). Using the critical values of
gj (44), we get the relation between aj(β), αk,k′(β) at the
critical surface,

gcj (jaj−1)+
ĝcj
j

+
∑
k,k′

22−|k|−|k
′|(−1)|k|+|k

′|αk,k′
kj

gcj
Υk+k′

(
gcj
)
= 0,

j = 1, · · · , p . (51)

Whether the above relation is achieved for some values of
the co-efficients aj(β), αk,k′(β) is a difficult question which
again needs a detailed understanding of the gauge theory
dynamics. The coefficients aj(β), αk,k′(β) have been per-
turbatively calculated in [19], and it can be shown that at
some specific β < βHG

7 the condition (51) is satisfied.
We would like to mention that there is no fine tun-

ing associated with the relation (44) or (51) being satis-
fied. This is because we have one tunable parameter, the
temperature, and one relation (44) to satisfy. Hence one
may hope that in the most general situation the rela-
tion (44) will be satisfied. In the next section we will dis-
cuss the double scaled partition function near the critical
point.
In a later section we will use the AdS/CFT correspon-

dence to argue that in the strongly coupled gauge theory,
a 10-dimensional “small black hole” saddle point reaches
the critical surface (51). The interpretation of this phe-
nomenon in the bulk string theory as a black hole to excited
string transition will also be discussed.

8 Double scaled partition function
at crossover

We will assume that the matrix model (34) has a saddle
point which makes a gapped to ungapped transition as we
change the parameters of the theory (αck,k′ , aj) by tuning

the temperature β−1. We will also assume that this sad-
dle point has one unstable direction, which corresponds
to opening the gap as we lower the temperature. These
assumptions are motivated by the fact that the small (eu-
clidean) Schwarzchild black hole crosses the critical surface
and merges with AdS5×S5, and that it is an unstable sad-
dle point of the bulk theory. To calculate the double scaled
partition function near this transition point, we basically
follow the method used in [16]. We expand the effective
action (34) around the 1st critical point, and we simultan-
eously expand the original couplings aj , gj , ḡj and αk,k′
around their critical values acj , β

c
j , g

c
j = 0, and α

c
k,k′ . For

clarity we define

P (µ, µ̄, α) =
∑
k,k′

αk,k′(−i)
|k|+|k′|Υk(µ̄)Υk′(µ) . (52)

7 β−1HG is the temperature of the Hagedorn transition.

We also introduce the column vectors,

µ=

(
µj
µ̄j

)
, A=

(
aj
αk,k′

)
, g =

(
gj
ḡj

)
(53)

and expand the above mentioned vector variables

g− gc =N−
2
3 t̃ ,

µ−µc =N−
4
3n ,

A−Ac = g̃N−
2
3α , (54)

where g̃ =N
2
3 (β−βc) and α=

∂A
∂β
|β=βc . The expansion of

the co-efficients aj and α
c
k,k′ are proportional to the devi-

ation of the tuning parameter β from its critical value, i.e.
g̃ =N

2
3 (βc−β).

The expanded action takes the following form:

N2Seff =−
1

2
N−

2
3ntLn+nt(J t− g̃Hα)

+F (C · t̃)+O
(
N−

4
3

)
. (55)

In the above we have, following the discussion in Ap-
pendix A, used the fact that the o(1) function F depends
on the scaled variable through the combination t = C · t̃.
Recall that C is the constant vector normal to the critical
plane and the matrices L, J ,H are given by

L=

⎛
⎝ − ∂2P

∂µj∂µk
a
(c)
j δjk−

∂2P
∂µj∂µ̄k

a
(c)
j δjk−

∂2P
∂µj∂µ̄k

− ∂2P
∂µ̄j∂µ̄k

⎞
⎠ ,

H =

⎛
⎝−µ̄jδjk

∂2P
∂µj∂αk,k′

−µjδjk
∂2P

∂µ̄j∂αk,k′

⎞
⎠ ,

J =
1

2

(
iF F
iF −F

)
. (56)

In the above we have introduced the diagonal matrix

Fjk =
1

j
δjk, j, k = 1, · · · , p . (57)

All quantities appearing in the matrices are calculated at
the first critical point. Here o(N2) part of the action does
not depend on n, t̃ and hence we do not show this part of
the action explicitly.
We now do the gaussian integration over nk in the func-

tional integral

Z ∼

∫
d t̃
(
det
(
N−

2
3L
))− 12

× exp

{
1

2
N
2
3 (t̃− g̃Cα)tM(t̃− g̃Cα)

+F (C · t̃)+O(N−
2
3 )

}
, (58)

The matrices appearing here can be easily obtained,

D =
1

2

(
F 0
0 F

)
, M= J tL−1J +D ,

C =−M−1J tL−1H . (59)
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Notice that the hessian associated with Seff is given by

H =

(
−L J
J D

)
. (60)

In order to discuss the further evaluation of the in-
tegral (58), we must take into account the fact that we
are evaluating the integral near an unstable saddle point.
That the saddle point has precisely one unstable direction
is motivated by the fact that in the bulk theory the eu-
clidean 10-dimensional black hole has one negative eigen-
value. This statement strictly speaking should apply to
the saddle point in the gapped phase. However, since the
GWW phase transition is third order, an unstable saddle
point in the gapped phase should continue to be unstable
at the crossover.
In order to render the gaussian integral (58) along the

unstable direction well defined, we should make an analytic
continuation. Once this is done we can easily see that as
N →∞ the integral in (58) is localized at

t̃= g̃Cα . (61)

This follows from a matrix generalization of the gaussian
representation of the delta function.
Putting the above expression in (58) we get the final

result

Z ∼ i(det(H))−
1
2 expF (g̃C · Cα) , (62)

where C · Cα is a constant independent of g̃. We have as-
sumed that the hessian H does not have a zero mode,
but the one negative eigenvalue accounts for the i in front
of (62).
The o(1) part of the partition function, (62), is uni-

versal in the sense that the appearance of the function
F (g̃× constant) does not depend on the exact values of the
parameters of the theory. In the double scaling limit the
partition function becomes a function of a single scaling
variable g̃. Exact values of the couplings and the o(N2)
part of the partition function determine where the ther-
mal history crosses the critical surface (44). However the
form of the function F and the double scaling limit of (54)
are independent of the exact values of gck. They only de-
pend on the fact that one is moving away perpendicular to
the critical surface. This is the reason why in [16] we ob-
tained exactly the same equation when gc1 �= 0, but all other
gck = 0.

8.1 Condensation of winding modes at the crossover

We will now discuss the condensation of the winding
Polyakov lines in the crossover region. Specifically we will
discuss the expectation value of the critical operator (46).
In the leading order in largeN we have already seen in (42)
that ρck = kg

c
k. In order to calculate subleading corrections,

it can be easily seen that all the ρk’s condense in the scaling
region,

〈
N
2
3 (ρk−ρ

ug
k )
〉
= Ck

dF

dt
, (63)

where ρugk = kgk. This smoothness of the expectation value
of the ρk’s follows from the smooth nature of F (t). The
exact form of F (t) is not known but it is known that
it is a smooth function with the following asymptotic
expansion:

F (t) =
t3

6
−
1

8
log(−t)−

3

128t3
+
63

1024t6
+ · · · , −t� 1 ,

F (t) =
1

2π
e−
4
√
2
3 t

3
2

×

(
−

1

8
√
2t
3
2

+
35

384t3
−

3745

18432
√
2t
9
2

+ · · ·

)
, t� 1.

(64)

The derivative of F (t) diverges as t→−∞ and goes to
zero as t→∞. This behavior tallies with the condensation
of the winding mode in one phase (the gapped phase) and
the non-condensation of winding modes in the ungapped
phase. The condensation of the winding modes also indi-
cates that the U(1) symmetry (which is the ZN symmetry
of the SU(N) gauge theory in the large N limit) is broken
at the crossover but restored in the limit t→∞.

9 Higher critical points and the introduction
of chemical potentials

Besides the first critical point, single trace unitary matrix
models can have higher critical points. The mth critical
point is characterized by

ρm(θ) ∼ (θ−π)
2m, θ→ π , (65)

and hence it is specified by the following relations:

ρ(2n)(π) = 0, 0≤ n <m . (66)

Writing the above in terms of the gk we get

∞∑
k=−∞

(−1)kk2n−1 (gck+ ḡ
c
k) = 0 , 0≤ n <m . (67)

A particular choice for the density of eigenvalues with
this behavior is

ρm(θ) = cm

(
2 cos

θ

2

)2m
, (68)

where

cm =
22m

2π

(m!)2

(2m)!
. (69)

By expanding in Fourier modes, one finds

ρm(θ) =
1

2π

(
1+2

m∑
k=1

(m!)2

(m−k)!(m+k)!
cos kθ

)
.

(70)
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Using the relation between the density of eigenvalues in the
ungapped phase and the matrix model potential one recov-
ers the critical potential of Periwal and Shevitz.
As the plane (67) is determined by more than two equa-

tions, a generic curve in the space of the couplings gk will
not necessarily intersect the plane. Hence by tuning one pa-
rameter, the history of a saddle point may not reach the
higher critical points. But one may consider a situation
where, along with temperature, some additional chemical
potentials are also turned on [35]. Using these chemical po-
tentials (like, say, the R-charge) we may be able to reach
higher multi-critical points.
In Appendix B, we have considered a more general ef-

fective action which includes general source terms in add-
ition to (11),

S̃(U,U†) = S(U,U†)+N
∑
k≥1

(
bkTrU

k+ b̄kTrU
†k
)
.

(71)

Using the above action, we have calculated the double scale
partition function near higher critical points. Similar to
our result in (62), the o(1) part of the double scaled par-
tition function becomes a universal function determined
by the mKdV hierarchy. It should be mentioned that the
calculation is performed near the mth multi-critical point
characterized by

gn = 0 , n >m . (72)

According to the comments at the end of Sect. 8 the final
form of the double scaled partition function (B.31) and the
double scaling limit (B.18) is universal and independent of
the particular choice of (72).

10 Applications to the small 10-dimensional
black hole

We now apply what we have learned about the matrix
model (gauge theory) GWW transition and its smoothen-
ing in the critical region to the black hole–string transition
in the bulk theory. The first step is to identify the matrix
model phase in which the black hole or, for that matter, the
supergravity saddle points occur. We will argue that they
belong to the gapped phase of the matrix model. This in-
ference is related to the way perturbation theory in 1

N
is

organized in the gapped and ungapped phase as discussed
in (40). Note that it is only in the gapped phase that the
1
N
expansion is organized in powers of 1

N2
, exactly in the

way perturbation theory is organized around classical su-
pergravity solutions in closed string theory. Hence at the
strong gauge theory coupling(λ� 1), it is natural to iden-
tify the small 10-dimensional black hole with a saddle point
of the equations of motion like (50) but obtained by using
F (gk, ḡk) corresponding to the gapped phase

8. One can as-
sociate a temperature with this saddle point which would
satisfy l−1s � T �R

−1.

8 A saddle point of the weakly coupled gauge theory may also
exist in the gapped phase. With a change in the temperature

As the temperature increases towards l−1s , one traces
out a curve (thermal history) in the space of the parame-
ters ai, αk,k′ of the effective theory. One can also say that
a thermal history is traced in the space of ρi =

〈
1
N
TrU i

〉
,

which depends on the parameters of the effective the-
ory. We will now make the reasonable assumption that
the thermal history, at a temperature Tc ∼ l−1s , intersects
the critical surface (43) (equivalently the plane (44)) and
then as the temperature increases further it reaches the
point ρi = 〈

1
NTrU

i〉= 0, which corresponds to AdS5×S5.
Once the thermal history crosses the critical surface, the
gauge theory saddle points are controlled by the free en-
ergy of the ungapped phase in (40). The saddle points
of (50) which were obtained using this free energy do not
correspond to supergravity backgrounds, because the tem-
perature, on crossing the critical surface, is very high:
T � l−1s . Besides this, the free energy in the gapped phase
has unconventional exponential factors (except at gk = 0,
which corresponds to AdS5×S5). It is likely that these
saddle points define in the correspondence exact confor-
mal field theories/non-critical string theories in the bulk.
Neglecting the exponential corrections exp(−N), it seems
reasonable, by inspecting the saddle point equations,
that in this phase the spectrum would be qualitatively
similar to that around ρi = 0. Since this corresponds to
AdS5×S5, we expect the fluctuations to resemble a string
spectrum.
As we saw in the previous section, our techniques are

good enough only to compute the o(1) part of the parti-
tion function in the vicinity of the critical surface which
depends on the renormalized coupling. The exact solution
of the free energy (in the single trace model) in the tran-
sition region in (40) enabled us to define a double scaling
limit in which the non-analyticity of the partition func-
tion could be smoothened out, by a redefinition of the
string coupling constant according to g̃=N

2
3 (βc−β). This

smooth crossover corresponds to the black hole crossing
over to a state of strings corresponding to the ungapped
phase.
We have also computed the VEV of the scaling oper-

ator, and hence at the crossover the winding modes ρi =〈
1
NTrU

i
〉
condense, (63). They also have a smooth para-

metric dependence across the transition. This phenomenon
in the bulk theory may have the interpretation of a smooth
topology change of a black hole spacetime to a spacetime
without any black hole and only with a gas of excited string
states. However in the crossover region a geometric space-
time interpretation is unlikely. We may be dealing with
the exact description of a non-critical string in five dimen-
sions in which only the zero mode along the S3 directions
is taken into account. This interpretation is inspired by the
fact that the free energyF (t) also describes the non-critical
type 0B theory, as was already discussed in [16, 33].

the saddle point can transit through the critical surface. Using
the results of [16], it is easy to see that this is precisely what
happens for the perturbative gauge theory discussed in [19]. We
note that in the corresponding bulk picture, since ls�RAdS,
the supergravity approximation is not valid. It would be inter-
esting to understand the bulk interpretation in this case.
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11 Implications for the lorentzian black hole,
the information puzzle,
and related matters

All our discussion has been in the context of the euclidean
time, both in the bulk and the boundary theory. Since
the boundary theory is governed by a well defined positive
hamiltonian the analytic continuation from euclidean to
lorentzian signature is well understood and simple. Hence
the partition function gives a way of computing the density
of states at a particular energy using the formula

Z(β) =

∫ ∞
0

dEρ(E)e−βE , (73)

where ρ(E) =Tr δ(H−E) is the density of states at energy
E. Since the partition function, in an appropriate scaling
limit, is a smooth function of the renormalized coupling
constant g̃, at the crossover between the gapped and un-
gapped phase, (73) implies that ρ(E) inherits the same
property. Since ρ(E) is as well a quantity that has mean-
ing when the signature of time is lorentzian, it would imply
that the black hole–string crossover in the lorentzian sig-
nature is also smooth. This is an interesting conclusion es-
pecially because we do not know the AdS/CFT correspon-
dence for the small lorentzian black hole. The lorentzian
section of the black hole has a horizon and singularity.
Since the gauge theory should also describe this configu-
ration, a smooth density of states in the crossover would
imply that the black hole singularity was resolved in the
gauge theory.
We believe in this conclusion, but an understanding of

this can only be possible if we have an explicit model in
the gauge theory of the small lorentzian black hole. Work
in this direction is in progress, drawing lessons from [29, 36,
37, 40, 41, 47].
This program was originally motivated by an attempt

to understand and resolve the information puzzle in black
hole physics. In the AdS/CFT correspondence we know
that the SU(N) gauge theory is defined by a hermitian
hamiltonian defined on S3×R. The N →∞ limit and the
λ→∞ limits make contact with the semi-classical grav-
ity limit of the type IIB string theory in the bulk. In this
limit, one can represent the quantum gravity theory path
integral as an integral which splits into a sum over distinct
topologies. In particular in the euclidean framework the
path integral splits as a sum of contributions from histories
with and without a black hole. However this representa-
tion arises by a naive consideration of the large N limit.
We know that as long as N is finite the notion of summing
over distinct topologies does not exist. A careful under-
standing of the double scaling limit has indeed made it
possible to treat finite N effects in a saddle point expan-
sion around largeN and smoothened the GWW transition.
Since we have identified this gauge theory phenomenon
with a smooth black hole–string crossover, we conclude
that topology change is indeed possible in the bulk string
theory.
In light of our results we are not convinced about Hawk-

ing’s proposed solution to the information puzzle [42],

which uses the notion of representing the quantum gravity
path integral as a sum over all topologies. At large but fi-
nite N (or equivalently at small but finite string coupling)
this notion is not neccessarily valid.

Appendix A: Discrete recursion relations,
m= 1 critical point
and Painlevé II

In this appendix we discuss the appearance of the m= 1
critical point in the discrete recursion relations in the pres-
ence of general couplings gk, where k is a positive inte-
ger. The main point can be explicitly illustrated in the
case of two couplings g1 and g2, and the generalization to
more general potentials is straightforward. We briefly re-
view how we find scaling regions in matrix models and how
double scaling limits are implemented. We follow closely
the work of Periwal–Shevitz [32]. The action we consider is

g1

(
TrU +TrU†

)
+ g2
(
TrU2+TrU†2

)
= µ1V1+µ2V2 ,

(A.1)

where V1,2 are the first critical potentials found in [32]:

V1 =
1

2

(
TrU +TrU†

)
,

V2 =
4

3

(
TrU +TrU†

)
+
1

12

(
TrU2+TrU†2

)
,

(A.2)

and

µ1 = 2g1−16g2 , µ2 = 12g2 . (A.3)

For those interested in the details, we have modified
the critical potentials by making the transformation gk→
(−1)kgk, U →−U . This is a symmetry of the action that
guarantees that the gap opens at θ = π. In the original pa-
per [32] the gap opens at θ= 0. Obviously the gap can open
anywhere on the circle, but we simply have to be consis-
tent once a convention is chosen. The Periwal–Shevitz [32]
equation with two couplings g1 and g2 in our convention
takes the following form:

−Rn
n+1

N
= (1−R2n)

[
− (Rn+1+Rn−1)g1

−2g2
(
Rn−1R

2
n−1+R

2
n−1Rn+2Rn−1RnRn+1

+RnR
2
n+1−Rn+2−Rn−2+R

2
n+1Rn+2

) ]
. (A.4)

We will show that this equation besides them= 2 fixed
point also has the m = 1 fixed point. The latter is well
known to be described by a Painlevé II equation with just
one coupling. (The derivation of Painlevé II from the one
coupling case has been discussed in the original paper [32]).
As usual, to find scaling regions we first solve the pla-

nar theory. However, we have to solve it for any n; in other
words, in the planar case Rn becomes a function R(ξ),
where ξ = n/N , which completely determines the planar
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limit of the theory. The equation that determines R(ξ) is
obtained by ignoring in (A.4) the above shifts in the R′s.
This yields the planar string equation:

Rξ = (1−R2)
(
2(g1−2g2)R+12g2R

3
)
. (A.5)

If we take the scaling region to be close to the endpoint of
the ξ interval, i.e. 1, we introduce the scaling variable

ξ = 1−a2t , (A.6)

as is standard in matrix models, and a is a small “lattice”
parameter that is necessary to study the scaling region.
Since in these theories the critical value of R= 0, we have
to write the function R in terms of some scaling funcion
with appropriate exponents:

R= aγf(t) . (A.7)

Since we want to consider only the first critical point m=
1, this implies that γ = 1, and the scaling behavior of R is

R= af(t) . (A.8)

Substituting in the planar string equation we obtain

af(1−a2t) = (1−a2f2)
(
2(g1−2g2)af +12g2a

3f3
)
.

(A.9)

The terms of order a determine the criticality condition,
which as expected is the gap opening condition:

g1−2g2 =
1

2
. (A.10)

The terms of order a3 now provide the planar string equa-
tion that determines the functional form of f as a function
of t to leading order in 1/N :

−a3tf(t) =−a3f3(2(g1−2g2)−12g2) ; (A.11)

all other terms are irrelevant to this order, and what this
equation does is to determine f(t), and also it provides the
first term in the expansion of the P-II equation in powers of
fractional powers of t. The condition (A.10) determines the
first critical point of the theory,m= 1, which implies that
near ξ = 1 (A.5) has a second order zero in R. If we require
that the zero is of order 4 (after dividing by a common R
on both sides) we obtain the conditions for the m= 2 crit-
ical point governed by the scaling action V2 above. Since
in our problem we have a single control paremeter, i.e. the
temperature, we focus on the m= 1 condition (A.10) and
study next the double scaling limit. To make contact with
the arguments of Sect. 6 we will study this limit for generic
coupling g1, g2; this way we include also the perturbations
of a given model on the “critical surface” (A.10) by the gap
opening operator (43).
So far the parameter a is just a small number, and for

the time being it has no dependence onN . To get theN de-
pendence we do the double scaling limit, by expanding the
full string equation, and see what is the relation between
N and a that leads to a differential equation containing the

string coupling constant, i.e. containing higher genus terms
in the expansion and thus generating a string perturbation
theory. Let us do it in general, but of course we have to keep
track of the fact that we have already determined the scal-
ing behavior of both ξ and R(ξ), and we have to include it
in (A.4):

af(ξ)(1−a2t) = (1−a2f(ξ)2)

×
(
2ag1f(ξ)−4ag2f(ξ)+12a

3g2f(ξ)
3
)

+(1−a2f(ξ)2)
(
20a3g2f(ξ)f

′(ξ)
2

+a(g1−8g2)f
′′(ξ)+20a3g2f(ξ)

2
f ′′(ξ)

)

×
1

N2
+ . . . (A.12)

Now we are ready to get the relation between N and a. In
going from derivatives with respect to ξ to derivatives with
respect to t, we obtain, including the factor of 1/N , a term
of the form

1

Na2
d

dt
(A.13)

for each derivative. Since the first non-trivial terms with
derivatives contains two of them, this means that

1

(Na2)2
d2

dt2
. (A.14)

The final result up to two derivatives (it is easy to show
that higher ones are irrelevant) is

−a3tf(t) =−(1−12g2)a
3f(t)3

+(g1−8g2)a
1

(Na2)2
d2f

dt2

+20g2a
3 1

(Na2)2
(fḟ2+f2f̈) , (A.15)

where the dots are derivatives with respect to t. To get the
double scaling limit, notice that we want that up to a nu-
merical constant

a

(
1

Na2

)2
= g2sta

3 . (A.16)

Hence, up to gst we obtain

a∼N−1/3 . (A.17)

Note that the terms in the third line of (A.15) will vanish
like a2 after we divide out by a3 unless we force a strange
scaling of g2, but this is something we cannot do in the
above procedure. The equation that survives is of course
Painlevé II after some simple numerical rescalings. The
computation has been carried out only for the two coupling
case, but it is easy to generalize to a more general action.
We have also included the case where we have a shift of the
couplings of the model with respect to the critical surface.
Of course the answer is the same, and the reason is that any
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of the terms Tr (Uk+U−k) that appear in the gap opening
operator have a component along the first scaling operator.
For the two coupling theory this is the origin of the term
−12g2 in the f3 piece and the term −8g2a in the term f̈ .
We get Painlevé II unless we do some unnatural fine tuning
in the coupling g2, a freedomwe do not have at our disposal
given that we have just one control parameter. Obviously,
even if we consider a more general potential, the same will
happen with the gap opening operator. The operator iden-
tified with gap opening in the text should more precisely
be called the “bare” gap opening operator. After renormal-
ization around any critical point, and in particular near
m= 1 it will be dominated by the first scaling operator.We
know also from [32] that the integrable hierarchy behind
the unitary matrix model is modified KdV (mKdV), and
their flows can be identified with the expectation values of
the scaling operators of the theory (including of course the
irrelevant ones at them= 1 critical surface).
One may wonder what happens with the expectation

values of ρn at the crossover region. This is however no
problem, since we can renormalize these operators with
more freedom than we have above, in fact, the way to argue
that generically, at the initial conditions of the mKdV hier-
archy that starts with Painlevé II, and the continuum limit
of the ρn gets an expectation value, is to use the renormal-
izedWilson loop operator of the matrix model, as it is done
in [43]. The expansion of the Wilson loop 〈w(t)〉 has as co-
efficients for each power of tn+1 precisely the expectation
value of the corresponding σn, which are the continuum
limits of the ρn, and what follows from the double scaling
limit of the loop equations is that to leading order those
expectation values are not zero and are given by a power
of f to leading planar order with corrections. This power
of course is not zero, and hence it says that the corres-
ponding derivative of the free energy with respect to the
scaling parameter tn that produces the expectation value
of ρn is not zero, even when we set tn = 0 after taking the
derivative.

Appendix B: Partition function near
multi-critical points

Here we will calculate the double scaled partition function
near higher multi-critical points. We start with (71) and
denote

Z =

∫
[dU ]e

˜S(U,U†) , (B.1)

where S̃(U,U†) has the form (71). We will assume in the
following that ai > 0. We closely follow the discussion
of Sect. 8 and use the standard gaussian trick discussed
in Sect. 5 to write

Z =

(
N4

2π2

)p ∫ p∏
i=1

dgidḡidµidµ̄i expN
2Seff ,

(B.2)

where

Seff =−
p∑
j=1

ajµjµ̄j+i
∑
j

(µj ḡj+ µ̄jgj)

+
∑
k,k′

αk,k′(−i)
|k|+|k′|Υk(µ̄)Υk′(µ)

+F
(
gk+ bk, ḡk+ b̄k

)
. (B.3)

We now write gk as

gl =
1

2l
(βl− iγl) , (B.4)

and we also write

bk =
1

2k
(g̃k− iγ̂k) . (B.5)

Performing a change of the variables in the integral,

gk→ gk+ bk, ḡk→ ḡk+ b̄k , (B.6)

we get

Seff =

p∑
j=1

(
−ajµj µ̄j

+
i

2j

(
(βj− g̃j) (µj+ µ̄j)+ i (γj− γ̂j) (µj− µ̄j)

))

+
∑
k,k′

αk,k′(−i)
|k|+|k′|Υk(µ̄)Υk′(µ)+F (βk, γj) .

(B.7)

We will assume that we are analyzing the theory in the un-
gapped phase, in the proximity of the even multi-critical
pointm= 2k. In this case we have

N2F (β, γ) =N2Fug(β, γ)+N
2Fscaling(β, γ) ,

(B.8)

where Fug(β, γ) is the planar free energy in the ungapped
phase (40), and Fscaling(β, γ) satisfies

lim
N→∞

N2Fscaling(β, γ) = F
(m)(tl) , (B.9)

where F (m)(tl) is the double scaled free energy at the
mth multi-critical point determined by the solution to the
mKdV hierarchy [34].
To find the saddle point at large N we only have to

consider the contribution of the free energy F (β, γ) in the
ungapped phase. The equations for the saddle point are
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given by

∂Seff

∂βj
=
i

2j
(µj+ µ̄j)+

1

2j
βj = 0 ,

∂Seff

∂γj
=−

1

2j
(µj− µ̄j)+

1

2j
γj = 0 ,

∂Seff

∂µj
=−ajµ̄j+

i

2j
(βj− g̃j+iγj− iγ̂j)

+
∑
k,k′

αk,k′(−i)
|k|+|k′|

k′j

µj
Υk(µ̄)Υk′(µ) = 0 ,

∂Seff

∂µ̄j
=−ajµj+

i

2j
(βj− g̃j− iγj+iγ̂j)

+
∑
k,k′

αk,k′(−i)
|k|+|k′| kj

µ̄j
Υk(µ̄)Υk′(µ) = 0 .

(B.10)

In the first two equations we have used that, in the un-
gapped phase,

∂Fug

∂βj
=
1

2j
βj ,

∂Fug

∂γj
=
1

2j
γj . (B.11)

We will assume that there is a solution to these equations
corresponding to the mth multi-critical even point of the
model (B.3), which is characterized by

γj = 0 , βj = β
(m)
j , (B.12)

where the critical values of the couplings β
(m)
j can be read

from the particular solution (70).We find that this solution
leads to the conditions

µ
(m)
j = µ̄

(m)
j =

i

2
β
(m)
j . (B.13)

One finds the equations for the critical submanifolds in the
original couplings, aj , g̃k, and αk,k′ ,

β
(m)
j (jaj−1)+

g̃cj

j

+
∑
k,k′

22−|k|−|k
′|(−1)|k|+|k

′|αk,k′
kj

β
(m)
j

Υk+k′
(
β
(m)
j

)
= 0 ,

j = 1, · · · , p , (B.14)

where g̃cj is the critical value of g̃j , and we have set γ̂
c
j = 0

for simplicity.
We now expand the effective action around the critical

point, and we expand simultaneously the original couplings
aj , g̃j , γ̂j and αk,k′ around a point a

c
j , g̃

c
j , γ̂

c
j = 0, and α

c
k,k′

on the critical submanifold determined by (B.14). We de-
note

P (µ, µ̄, α) =
∑
k,k′

αk,k′(−i)
|k|+|k′|Υk(µ̄)Υk′(µ) .

(B.15)

We introduce the column vectors of variables,

ξ(N)n=

(
µj−µ

(m)
j

µ̄j− µ̄
(m)
j

)
, α=

(
aj−acj

αk,k′−α
c
k,k′

)
,

g =

(
βj−β

(m)
j

γj

)
, b=

(
g̃j− g̃cj
γ̂j

)
, (B.16)

where ξ(N) is an appropriate scaling factor. When we
expand the action in (B.3) around the mth multi-critical
point, we obtain
∑
l

(
glTrU

l+ glTrU
†l
)
= V (m)+

∑
n

N
n−2m
2m+1 tnṼn ,

(B.17)

where V (m) is the critical potential associated to the mth
multi-critical point, and the Ṽn are scaling operators which
can be explicitly written by using the results of [44]. In this
way we find the relation between the variables g introduced
in (B.16) and the scaling operators of the multi-critical
model,

ga =
∑
n≥0

GanN
n−2m
2m+1 tn , (B.18)

where G is a matrix that can be explicitly determined
from the expressions for the perturbations of the density of
eigenvalues. Equation (B.18) determines the scaling prop-
erties of the ga. Notice that we can use the freeedom to
rotate U to get rid of one of the 2p parameters gi, ḡi, so we
will only have 2p−1 times.
We now do a gaussian integration over n. The relevant

part of the action reads

N2Seff =−
1

2
N2ξ(N)2ntLn

+N2ξ(N)nt(J g−J b+Hα)+ · · · , (B.19)

where the matrices L, J ,H are given by

L=

⎛
⎝ − ∂2P

∂µj∂µk
a
(c)
j δjk−

∂2P
∂µj∂µ̄k

a
(c)
j δjk−

∂2P
∂µj∂µ̄k

− ∂2P
∂µ̄j∂µ̄k

⎞
⎠ ,

H =

⎛
⎝−µ̄jδjk

∂2P
∂µj∂αk,k′

−µjδjk
∂2P

∂µ̄j∂αk,k′

⎞
⎠ ,

J =
1

2

(
iF F
iF −F

)
, (B.20)

and we have introduced the diagonal matrix

Fjk =
1

j
δjk, j, k = 1, · · · , p . (B.21)

All quantities involved in these matrices are evaluated at
the critical point. The gaussian integration leads to

N2p(det(L))−
1
2

× exp

{
1

2
N2(g−Eb−Cα)tM(g−Eb−Cα)

+F (m)(t�)+ · · ·

}
, (B.22)



L. Álvarez-Gaumé et al.: Black hole/string transition for the small Schwarzschild black hole of AdS5×S
5 663

where we have assumed that L does not have zero modes,
and we have used and the fact that the gaussian integra-
tion gives an overall factor N−2p which combines with the
overallN4p in (B.2). Notice that the scaling ξ(N) does not
appear in this equation. The choice of ξ(N) must be done
in such a way that the rest of the terms involving n in the
expansion of N2Seff vanish in the limit N →∞. The ma-
trices appearing here can be easily obtained from the above
data. Then we have

D =
1

2

(
F 0
0 F

)
,

M= J tL−1J +D ,

C =−M−1J tL−1H ,

E =M−1J tL−1J . (B.23)

Notice that the hessian associated to Seff is given by

H =

(
−L J
J D

)
. (B.24)

We now introduce scaling variables for the couplings g and
α. The scaling of g is determined. In this way we obtain
for (B.22)

exp

{
1

2

∑
n,p

N
2+n+p
2m+1

(
tn− t

0
n

)
Anp
(
tp− t

0
p

)
+F (m)(t�)

+ · · ·

}
, (B.25)

where

A= GtMG ,

t0n =N
2m−n
2m+1

∑
�

(
(G−1C)n�α�+(G

−1E)njbj
)
.

(B.26)

As we see, the scaling of the original coupling constants
packaged in α and b is determined by the scaling of the cou-
plings in themth critical point.
In the limit N →∞, the integral localizes in

tn = t
0
n . (B.27)

To see this in detail, we use the following fact. Let Bε be an
n×n matrix whose entries go to +∞ as ε→ 0. Then, one
has the following:

lim
ε→0
(det(Bε))

1
2 e−

1
2x
tBεx = π

n
2 δ(x) . (B.28)

In our case we find that

exp

{
1

2

∑
n,p

N
2+n+p
2m+1

(
tn− t

0
n

)
Anp
(
tp− t

0
p

)}
→

N−
∑

n≥0(n+1)

2m+1
πp−

1
2

det(G)(det(−M))
1
2

δ(t− t0) ,

(B.29)

as N →∞. Remember that there are only 2p−1 times in-
volved. After changing variables in the integral from g, ḡ to
t, we inherit a jacobian

N

∑

n≥0(n−2m)

2m+1 det(G) . (B.30)

Putting all these ingredients together, we finally obtain

Z ∼N(det(H))−
1
2 expF (m)(t0n) , (B.31)

up to factors of π. We have assumed here that H has no
zero modes. The factor of N comes from the fact that the
quotient between the factors of N in (B.29) and (B.30)
gives a power of N given simply by minus the number of
times involved, which is −2p+1. This combines with the
factor N2p in (B.22) to give an overall factor of N . In the
above derivation we have assumed thatM (and therefore
H has no zero eigenvalues).
We can also analyze the more general case in which

M (which is a p× p matrix) has � nonzero eigenvalues
dn, n = 1, · · · , �, and 2p− � zero eigenvalues. Let R−1 be
the orthogonal 2p× 2p matrix that diagonalizes M, i.e.
R−1tMR−1 = diag(dn, 0). Define now the following eigen-
vectors ofM:

r =N
2m
2m+1Rg , (B.32)

which in terms of the scaling operators means

rn =
∑
q

RnqtqN
q

2m+1 , (B.33)

whereR=RG. Then, the exponent in the gaussian (B.22)
becomes

1

2
N

2
2m+1

�∑
n=1

dn

(
rn−N

2m
2m+1 cn

)2
+N

2+2m
2m+1

2p∑
n=�+1

rnζn ,

(B.34)

where

ζn =
∑
q

R−1tnq
(
J tL−1Hα−J tL−1J b

)
q
,

n= �+1, · · · , 2p ,

cn =−d
−1
n

∑
q

R−1tnq
(
J tL−1Hα−J tL−1J b

)
q
,

n= 1, · · · , � . (B.35)

As N →∞, the first term in (B.34) gives a delta function
constraint of the form

∑
q≥0

RnqtqN
q

2m+1 = cn, n= 1, · · · , � ; (B.36)

therefore, there are only 2p−1− � independent times in-
volved. From the behavior of the above equation asN →∞
it follows that we have to solve for the times with the higher
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scaling dimension in terms of the constants cn. This in turn
determines the scaling properties of cn:

tq = t
0
q ≡N

2m−q
2m+1

�∑
n=1

R−1qn cn, q = 2p−1− �, · · · , 2p−2 ,

(B.37)

where we have inverted the �× � submatrix Rqn, q, n =
2p− 1− �, p− 2. This fixes the values of � times in the
free energy as functions of the scaled parameters cn, n=
1, · · · , �. The other times lead to a integral transform. To
see this, let us define

t̄q =N
2m+2+q
2m+1

2p∑
n=�+1

Rnqζn . (B.38)

This equation determines the scaling of ζn. Notice that the
scaling properties induced on cn and ζn are very different.
Up to overall factors, we end up with the integral

∫ 2p−2∏
n=0

dtn

2p−2∏
q=2p−1−�

δ
(
tq− t

0
q

)
exp

{2p−2∑
q=0

tq t̄q+F
(m)(tq)

}

= e
∑2p−2
q=2p−1−� t

0
q t̄q

∫ 2p−2−�∏
n=0

dtn exp

{2p−2−�∑
q=0

tq t̄q

+F (m)
(
t0, · · · , t2p−2−�, t

0
2p−1−�, · · · , t

0
2p−2

)}
. (B.39)

For hermitian matrix models, a similar result was obtained
in [45]. Notice that the integral transform will change the
critical exponents of the model, as noted in [45].
To illustrate our formalism we can look to the example

of free YM theories at finite temperature [17, 46]:

S(U,U†) =
∞∑
j=1

ajTrU
jTrU†j , (B.40)

where

aj =
1

j
(zB(x

j)+ (−1)j+1zF (x
j)) . (B.41)

The equation for the critical surface reduces to

β
(m)
j (jaj−1)+

g̃cj

j
= 0 , (B.42)

and by tuning the value of g̃cj we can reach any critical
point. Notice that, if we do not include the bk terms in the
original action, only the first critical point m = 1 can be
realized in the model. In that case, one has

a1(T ) = 1 , (B.43)

which defines the Hagedorn temperature T = TH. Also, if
we do not include the source terms involving bk, we can
turn on only a single scaling operator in the theory and we
recover them= 1model. When one includes the bk, b̄k cou-
plings one can also recover all the evolution times of the
double scaled matrix model.
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